Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation.

Identifieur interne : 000F80 ( Main/Exploration ); précédent : 000F79; suivant : 000F81

Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation.

Auteurs : Miguel Portillo-Estrada ; Terenzio Zenone ; Nicola Arriga ; Reinhart Ceulemans

Source :

RBID : pubmed:29937921

Abstract

Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non-negligible portion of the carbon fixed by primary producers, but long-term ecosystem-scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (Populus) short-rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha-1 yr-1, which represented 0.63% of the net ecosystem exchange (NEE), resulting from -23.59 Mg C ha-1 yr-1 fixed as CO 2 and 20.55 Mg C ha-1 yr-1 respired as CO 2 from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO 2 fixed. Based on annual ecosystem-scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5-2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO 2 and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.

DOI: 10.1111/gcbb.12506
PubMed: 29937921
PubMed Central: PMC5993229


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation.</title>
<author>
<name sortKey="Portillo Estrada, Miguel" sort="Portillo Estrada, Miguel" uniqKey="Portillo Estrada M" first="Miguel" last="Portillo-Estrada">Miguel Portillo-Estrada</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zenone, Terenzio" sort="Zenone, Terenzio" uniqKey="Zenone T" first="Terenzio" last="Zenone">Terenzio Zenone</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Arriga, Nicola" sort="Arriga, Nicola" uniqKey="Arriga N" first="Nicola" last="Arriga">Nicola Arriga</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29937921</idno>
<idno type="pmid">29937921</idno>
<idno type="doi">10.1111/gcbb.12506</idno>
<idno type="pmc">PMC5993229</idno>
<idno type="wicri:Area/Main/Corpus">000D78</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D78</idno>
<idno type="wicri:Area/Main/Curation">000D78</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D78</idno>
<idno type="wicri:Area/Main/Exploration">000D78</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation.</title>
<author>
<name sortKey="Portillo Estrada, Miguel" sort="Portillo Estrada, Miguel" uniqKey="Portillo Estrada M" first="Miguel" last="Portillo-Estrada">Miguel Portillo-Estrada</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zenone, Terenzio" sort="Zenone, Terenzio" uniqKey="Zenone T" first="Terenzio" last="Zenone">Terenzio Zenone</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Arriga, Nicola" sort="Arriga, Nicola" uniqKey="Arriga N" first="Nicola" last="Arriga">Nicola Arriga</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<affiliation>
<nlm:affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Global change biology. Bioenergy</title>
<idno type="ISSN">1757-1693</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non-negligible portion of the carbon fixed by primary producers, but long-term ecosystem-scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (
<i>Populus</i>
) short-rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha
<sup>-1</sup>
 yr
<sup>-1</sup>
, which represented 0.63% of the net ecosystem exchange (NEE), resulting from -23.59 Mg C ha
<sup>-1</sup>
 yr
<sup>-1</sup>
fixed as CO
<sub>2</sub>
and 20.55 Mg C ha
<sup>-1</sup>
 yr
<sup>-1</sup>
respired as CO
<sub>2</sub>
from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO
<sub>2</sub>
fixed. Based on annual ecosystem-scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5-2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO
<sub>2</sub>
and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29937921</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1757-1693</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Global change biology. Bioenergy</Title>
<ISOAbbreviation>Glob Change Biol Bioenergy</ISOAbbreviation>
</Journal>
<ArticleTitle>Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation.</ArticleTitle>
<Pagination>
<MedlinePgn>405-414</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/gcbb.12506</ELocationID>
<Abstract>
<AbstractText>Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non-negligible portion of the carbon fixed by primary producers, but long-term ecosystem-scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (
<i>Populus</i>
) short-rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha
<sup>-1</sup>
 yr
<sup>-1</sup>
, which represented 0.63% of the net ecosystem exchange (NEE), resulting from -23.59 Mg C ha
<sup>-1</sup>
 yr
<sup>-1</sup>
fixed as CO
<sub>2</sub>
and 20.55 Mg C ha
<sup>-1</sup>
 yr
<sup>-1</sup>
respired as CO
<sub>2</sub>
from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO
<sub>2</sub>
fixed. Based on annual ecosystem-scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5-2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO
<sub>2</sub>
and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Portillo-Estrada</LastName>
<ForeName>Miguel</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-0348-7446</Identifier>
<AffiliationInfo>
<Affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zenone</LastName>
<ForeName>Terenzio</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arriga</LastName>
<ForeName>Nicola</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ceulemans</LastName>
<ForeName>Reinhart</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Centre of Excellence PLECO Department of Biology University of Antwerp Universiteitsplein 1 Wilrijk B-2610 Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Glob Change Biol Bioenergy</MedlineTA>
<NlmUniqueID>101517159</NlmUniqueID>
<ISSNLinking>1757-1693</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">eddy covariance</Keyword>
<Keyword MajorTopicYN="N">gross primary production</Keyword>
<Keyword MajorTopicYN="N">isoprene emission</Keyword>
<Keyword MajorTopicYN="N">mass spectrometry</Keyword>
<Keyword MajorTopicYN="N">methanol emission</Keyword>
<Keyword MajorTopicYN="N">net ecosystem exchange</Keyword>
<Keyword MajorTopicYN="N">proton‐transfer‐reaction</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29937921</ArticleId>
<ArticleId IdType="doi">10.1111/gcbb.12506</ArticleId>
<ArticleId IdType="pii">GCBB12506</ArticleId>
<ArticleId IdType="pmc">PMC5993229</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Glob Change Biol Bioenergy. 2017 Jun;9(6):1151-1164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28603557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(7):1783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jul;36(7):856-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27225874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Jul;142(3):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21361963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Feb 28;6(2):e17393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21387007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2017 Jan;130(1):157-165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27885502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Mar;39(3):539-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26386252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Sep;95(3):328-333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28314006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biogeosci Discuss. 2013 Nov;10(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24363783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Oct;21(10):3657-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25980459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 12;6:32676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27615148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Apr;38(4):751-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Feb;101(2):435-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Dec;41(12):1105-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1558-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Feb 21;46(4):2283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22296026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2012 Oct;22(7):1865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23210305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Change Biol Bioenergy. 2017 Feb;9(2):299-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28261329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1790-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24635661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Arriga, Nicola" sort="Arriga, Nicola" uniqKey="Arriga N" first="Nicola" last="Arriga">Nicola Arriga</name>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<name sortKey="Portillo Estrada, Miguel" sort="Portillo Estrada, Miguel" uniqKey="Portillo Estrada M" first="Miguel" last="Portillo-Estrada">Miguel Portillo-Estrada</name>
<name sortKey="Zenone, Terenzio" sort="Zenone, Terenzio" uniqKey="Zenone T" first="Terenzio" last="Zenone">Terenzio Zenone</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29937921
   |texte=   Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29937921" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020